China Best Sales FM / UL Approved Ductile Iron Grooved Coupling Rigid Coupling

Product Description

Ductile Iron Grooved Pipe Coupling
We can also produce according to your drawings.

Size DN25-300(1″-12″) or as customer’s requirement
Material Ductile iron or ferritic nodular iron
Standard DIN, ASTM, JIS, ANSI etc. Or according to customer’s drawing
Surface Furnish: Red painted, orange painted, galvanized, red spraied, orange spraied, dacromet, epoxy powder, epoxy, electroplate, galvanized+epoxy, etc.
Pressure 300PSI, 450PSI, 500PSI, or as request
Applications: Fire protection, Water supply system, General pipe system, Air-conditioning, Sewage system, Cement pipe system, Mine pipe systems
Packing: 1 )Packed in cartons and then packaged in pallet which will be covered by plastic film.
2)In fumigation-free wooden case
ADVANTAGE: Easy to assemble and disassembel, easy to operate
Engineering Tests: Vaccum Test, Hydrostatic Strength Test,
Air Leakage TEST, Moment Test,
Hot Gasket Test, Cold Gasket Test, Flame Test,
Cycling Pressure Resistance(Water Heamer Test),
Friction Loss Determination, Leakage Test-Assembly without Gasket,
Torsion Test, Flexibility Test for Flexible Fittings, Seismic Evaluation,
Lateral Displacement, Hydrostatic Fluctuation Pressure Test, Fire Test

 Flexbile Coupling
Nominal Size mm/in Pipe O.D mm/in Working Pressure PSI/MPa Dimensions mm/in
25              33.7   300  55.     95     45   
1      1.327 2.07 2.165 3.74 1.772
32       42.4   300  65  105   45   
1.669 2.07 2.559 4.133 1.772
40    48.3   300   71.   110     4.331 45   
1.9 2.07 2.795 1.772
50  60.3  300  82     124   45   
2 2.375 2.07 3.228 4.882 1.772
65  73.0   300  98      141 45   
2.875 2.07 3.858 5.551 1.772
65  76.1   300  100   142   45   
3OD 3 2.07 3.937  5.59 1.772
80  88.9  300  113    160  46   
3 3.5 2.07 4.449  6.299 1.811
100  114.3  300  142    190   49  
4 4.5 2.07 5.59 7.48 1.929
125  139.7 300  168    218   49  
5.5OD 5.5 2.07 6.614 8.583 1.929
150   165.1  300  194    244   49  
6.5OD 6.5 2.07 7.638 9.606 1.929
150  168.3       6.625 300  198    248  49  
6 2.07 7.795 9.764 1.929
200 219.1  300  256.   320  60   
8 8.625 2.07 10.079 12.598 2.362
250  273  300  328   420  64   
10 10.748 2.07 12.913 16.535 2.52
300  323.9  300  380   454  64   
12 12.752 2.07 14.961 17.874 2.52

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rigid coupling

Are There Any Safety Considerations When Using Rigid Couplings in Rotating Machinery?

Yes, there are several safety considerations to keep in mind when using rigid couplings in rotating machinery. While rigid couplings offer various advantages, their use in certain applications requires careful attention to safety measures to prevent accidents and equipment damage. Here are some important safety considerations:

Secure Installation: Proper installation of rigid couplings is crucial to ensure safety. The coupling must be securely mounted and aligned with the shafts to prevent any slippage or disengagement during operation. Use of appropriate mounting hardware, such as high-strength bolts, is essential to maintain the coupling’s integrity under high-speed and high-torque conditions.

Shaft Alignment: Accurate shaft alignment is necessary to avoid excessive forces and stress on the connected machinery. Misaligned shafts can lead to uneven loading and increased wear on bearings and other components. Regularly inspect and maintain the shaft alignment to prevent premature failures.

Preventing Over-Torquing: Applying excessive torque during the installation of rigid couplings can lead to equipment damage and compromise safety. Follow the manufacturer’s torque specifications and use torque-limiting tools to prevent over-torquing and potential failures.

Protective Guards: In some applications, rotating machinery with rigid couplings may pose a safety hazard to personnel working nearby. Install appropriate protective guards and covers to prevent accidental contact with rotating shafts, minimizing the risk of injury.

Regular Maintenance: Implement a routine maintenance schedule to inspect the rigid couplings and associated equipment. Check for signs of wear, fatigue, or cracks. Address any issues promptly to avoid potential catastrophic failures.

Operational Speed Limits: Be aware of the operational speed limits specified by the manufacturer for the rigid couplings. Exceeding these limits can result in significant stress and fatigue on the coupling, leading to failure.

Appropriate Coupling Selection: Choose the appropriate type and size of rigid coupling for the specific application. Using an undersized coupling can lead to excessive loads and potential failure, while an oversized coupling may not efficiently transmit torque.

Temperature Considerations: Rigid couplings can experience temperature variations during operation. Ensure that the material and design of the coupling are suitable for the anticipated temperature range of the application to maintain safety and performance.

Training and Awareness: Provide proper training to personnel working with rotating machinery equipped with rigid couplings. Ensure they are aware of safety procedures and potential hazards associated with the equipment.

Adhering to these safety considerations will help ensure the safe and reliable operation of rotating machinery equipped with rigid couplings. Regular maintenance, correct installation, and diligent attention to safety guidelines will minimize risks and contribute to a safe working environment.

rigid coupling

Impact of Rigid Coupling on the Overall Reliability of Connected Equipment

A rigid coupling plays a crucial role in enhancing the overall reliability of connected equipment in mechanical systems. Here’s how it positively impacts reliability:

1. Power Transmission Efficiency: Rigid couplings provide a direct and efficient connection between the shafts of the connected equipment. With no flexible elements, there is minimal power loss, ensuring efficient power transmission from one shaft to another.

2. Elimination of Backlash: Rigid couplings have zero backlash, which is crucial in precision applications. Backlash, which is the play or clearance between connected components, can cause inaccuracies in motion control systems. With a rigid coupling, any movement is directly transferred, maintaining precise positioning.

3. Zero-Maintenance Option: Some rigid couplings are designed to be maintenance-free. They do not require lubrication or periodic adjustments, reducing downtime and ensuring continuous operation.

4. High Torque Transmission: Rigid couplings can handle high torque loads, making them suitable for heavy-duty applications. Their robust construction ensures reliable torque transmission without failure or slippage.

5. Resistant to Misalignment: While rigid couplings offer no flexibility, they are excellent at handling axial misalignment and angular misalignment, provided it falls within their design limits. This ability to tolerate some misalignment enhances reliability and reduces the risk of component damage.

6. Vibration Damping: The stiffness of rigid couplings aids in damping vibrations generated during operation. By minimizing vibrations, the coupling helps protect connected equipment from excessive stress and fatigue failure.

7. Increased System Stiffness: Rigid couplings contribute to the overall stiffness of the mechanical system. This stiffness improves the dynamic response of the system and reduces the likelihood of resonance, leading to more reliable operation.

8. Simple and Compact Design: Rigid couplings have a straightforward and compact design, which reduces the chances of component failure or wear. Their simplicity makes them easy to install and maintain, further enhancing system reliability.

9. Suitable for High-Speed Applications: Rigid couplings are well-suited for high-speed applications due to their ability to maintain accurate shaft alignment and transmit torque efficiently.

10. Compatibility with Various Industries: Rigid couplings find applications in a wide range of industries, including automotive, aerospace, manufacturing, and more. Their versatility and reliability make them a popular choice in demanding industrial environments.

Overall, the use of a properly selected and installed rigid coupling enhances the reliability of connected equipment by providing a robust and efficient connection between shafts. It ensures precise power transmission, reduced maintenance requirements, and improved system performance, leading to increased overall reliability and uptime of the mechanical system.

rigid coupling

Types of Rigid Coupling Designs:

There are several types of rigid coupling designs available, each designed to meet specific application requirements. Here are some common types of rigid couplings:

  • 1. Sleeve Couplings: Sleeve couplings are the simplest type of rigid couplings. They consist of a cylindrical sleeve with a bore in the center that fits over the shaft ends. The coupling is secured in place using setscrews or keyways. Sleeve couplings provide a solid and rigid connection between shafts and are easy to install and remove.
  • 2. Clamp or Split Couplings: Clamp couplings, also known as split couplings, are designed with two halves that fit around the shafts and are fastened together with bolts or screws. The split design allows for easy installation and removal without the need to disassemble other components in the system. These couplings are ideal for applications where the shafts cannot be easily moved.
  • 3. Flanged Couplings: Flanged couplings have flanges on each end that are bolted together to form a rigid connection. The flanges add stability and strength to the coupling, making them suitable for heavy-duty applications. They are commonly used in industrial machinery and equipment.
  • 4. Tapered Couplings: Tapered couplings have a tapered inner diameter that matches the taper of the shaft ends. When the coupling is tightened, it creates a frictional fit between the coupling and the shafts, providing a rigid connection. These couplings are often used in applications where high torque transmission is required.
  • 5. Marine or Clampshell Couplings: Marine couplings, also known as clampshell couplings, consist of two halves that encase the shaft ends and are bolted together. These couplings are commonly used in marine applications, such as propeller shafts in boats and ships.
  • 6. Diaphragm Couplings: Diaphragm couplings are a type of rigid coupling that provides some flexibility to accommodate misalignment while maintaining a nearly torsionally rigid connection. They consist of thin metal diaphragms that transmit torque while compensating for minor shaft misalignments.

The choice of rigid coupling design depends on factors such as shaft size, torque requirements, ease of installation, and the level of misalignment that needs to be accommodated. It is essential to select the appropriate coupling design based on the specific needs of the application to ensure optimal performance and reliability.

China Best Sales FM / UL Approved Ductile Iron Grooved Coupling Rigid Coupling  China Best Sales FM / UL Approved Ductile Iron Grooved Coupling Rigid Coupling
editor by CX 2024-03-03





Leave a Reply

Your email address will not be published. Required fields are marked *