China supplier Gnc-50X66 Aluminum Alloy Shaft Coupler High Rigid Clamp Coupling

Product Description

GNC-50×66 Aluminum Alloy Shaft Coupler High Rigid Clamp Coupling 

 

GNC-50×66 Aluminum Alloy Shaft Coupler High Rigid Clamp Coupling 

model parameter

common bore diameter d1,d2

ΦD

L

F

M

tightening screw torque
(N.M)

GNC-16×16

3,4,5,6,6.35,7,8

16

16

3.75

M2.5

1

GNC-16×24

3,4,5,6,6.35,7,8

16

24

3.75

M2.5

1

GNC-20×20

4,5,6,6.35,7,8,9,9.525,10

20

20

3.75

M2.5

1

GNC-20×30

4,5,6,6.35,7,8,9,9.525,10

20

30

3.75

M2.5

1

GNC-25×25

5,6,6.35,7,8,9,9.525,10,12

25

25

6

M3

1.5

GNC-25×36

5,6,6.35,7,8,9,9.525,10,12

25

36

6

M3

1.5

GNC-28.5×38

6,6.35,7,8,9,9.525,10,12,12.7,14

28.5

38

7.8

M4

2.5

GNC-32×32

6,6.35,7,8,9,9.525,10,12,12.7,14,15,16

32

32

7

M4

2.5

GNC-32×41

6,6.35,7,8,9,9.525,10,12,12.7,14,15,16

32

41

7.75

M4

2.5

GNC-40×44

8,9,9.525,10,11,12,12.7,14,15,15,17,18,19,20

40

44

10.5

M5

7

GNC-40×52

8,9,9.525,10,11,12,12.7,14,15,15,17,18,19,20

40

52

10.5

M5

7

GNC-50×55

10,11,12,12.7,14,15,16,17,18,19,20,22,24,25

50

55

13

M6

12

GNC-50×66

10,11,12,12.7,14,15,16,17,18,19,20,22,24,25

50

66

16

M6

12

GNC-63×71

10,11,12,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32,35

63

71

16.5

M6

12

model parameter

Rated torque(N.m)

maximum speed

(rpm)

weight

(g)

GNC-16×16

5

1000

7

GNC-16×24

5

9400

13

GNC-20×20

10

7500

15

GNC-20×30

10

7500

25

GNC-25×25

12

6000

29

GNC-25×36

12

6000

43

GNC-28.5×38

14

5500

48

GNC-32×32

15

4700

55

GNC-32×41

15

4700

65

GNC-40×44

19

4000

123

GNC-40×52

19

4000

150

GNC-50×55

45

4000

240

GNC-50×66

45

4000

280

 

 

 

320

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rigid shaft coupling

Can Rigid Shaft Couplings Accommodate Different Shaft Sizes and Handle High Torque Loads?

Yes, rigid shaft couplings are designed to accommodate different shaft sizes and are capable of handling high torque loads. One of the key advantages of rigid couplings is their ability to provide a solid and strong connection between two shafts.

Rigid shaft couplings come in various designs, such as one-piece and two-piece configurations. The one-piece couplings have a solid construction with no moving parts and are ideal for applications where precise alignment and torque transmission are essential.

The two-piece rigid couplings consist of two halves that are bolted together around the shafts, creating a tight and secure connection. These couplings allow for easier installation and removal without the need to move the connected shafts. They are commonly used in applications where frequent maintenance is required.

The design of rigid shaft couplings enables them to handle high torque loads efficiently. The solid and rigid construction allows for the direct transfer of torque from one shaft to another, minimizing power loss and ensuring precise torque transmission.

Moreover, rigid couplings can accommodate different shaft sizes by offering various bore diameters and keyway options. This adaptability allows users to connect shafts of different diameters without the need for additional modifications or couplings.

However, it is crucial to select the appropriate size and type of rigid coupling based on the specific application’s torque requirements and shaft sizes. Properly sized rigid couplings will ensure reliable and efficient power transmission while preventing issues such as misalignment, vibration, and premature wear.

rigid shaft coupling

Are there any real-world case studies or success stories of using rigid shaft couplings in various engineering projects?

While specific case studies might not be readily available, there are numerous real-world examples of using rigid shaft couplings in various engineering projects across industries. These projects highlight the versatility and benefits of rigid shaft couplings in different applications:

  • Industrial Machinery: Rigid shaft couplings are commonly used in industrial machinery such as conveyor systems, pumps, compressors, and machine tools. They ensure precise torque transmission, alignment, and stability in these critical applications, contributing to reliable and efficient operation.
  • Robotics: Robotics often require accurate and repeatable motion control. Rigid couplings provide a rigid connection between robotic joints and actuators, ensuring precise movement and positioning.
  • Aerospace: In aerospace applications, where safety and reliability are paramount, rigid shaft couplings play a role in connecting various components, such as engine components and control surfaces, ensuring consistent and reliable performance.
  • Medical Equipment: Rigid couplings are used in medical devices such as diagnostic equipment, laboratory instruments, and surgical tools. They contribute to accurate motion control and sample manipulation.
  • Automotive: Rigid shaft couplings can be found in automotive systems, including drivetrains and transmission systems. They ensure efficient torque transmission and alignment in components such as steering columns.
  • Printing and Packaging: Printing presses and packaging machinery rely on rigid couplings to maintain precise alignment between rollers and components, ensuring consistent print quality and packaging accuracy.

While these examples illustrate the broad range of applications where rigid shaft couplings are used, it’s important to note that the success of each project is influenced by factors beyond just the coupling. Proper installation, maintenance, and integration into the overall system are crucial for achieving optimal results.

When considering the implementation of rigid shaft couplings in a project, engineers should collaborate with coupling manufacturers, suppliers, and experienced professionals to ensure proper selection, installation, and operation. By leveraging the advantages of rigid couplings, engineering projects can benefit from improved efficiency, reliability, and performance.

rigid shaft coupling

Can Rigid Shaft Couplings Handle Misalignment Between Shafts Effectively?

Rigid shaft couplings are not designed to accommodate misalignment between shafts effectively. Unlike flexible couplings, which can bend or flex to some degree to compensate for misalignment, rigid couplings are inflexible and require precise alignment for proper operation.

When using rigid shaft couplings, it is crucial to ensure that the two shafts being connected are aligned with high accuracy. Misalignment between the shafts can lead to various issues, including:

  • Vibrations: Misalignment can cause vibrations and increase stress on the coupling and connected machinery, leading to premature wear and reduced performance.
  • Increased Stress: Misalignment results in additional stress on the shafts and coupling, which may lead to fatigue failure over time.
  • Reduced Efficiency: Misalignment can result in power loss and reduced overall system efficiency.
  • Noise: Misalignment may generate noise during operation, leading to potential discomfort for operators and additional wear on components.

To ensure the effective functioning of rigid shaft couplings, it is crucial to align the shafts accurately during installation. The alignment process typically involves using precision tools and techniques to achieve the desired alignment tolerances.

For applications where misalignment is expected or unavoidable, flexible couplings such as beam couplings or jaw couplings may be more suitable as they can accommodate slight misalignments and reduce the transmission of shock and vibration between shafts.

Overall, rigid shaft couplings are best suited for applications where precise shaft alignment is feasible and necessary for optimal performance. Proper alignment and regular maintenance are essential to maximize the life and efficiency of rigid couplings in mechanical systems.

China supplier Gnc-50X66 Aluminum Alloy Shaft Coupler High Rigid Clamp Coupling  China supplier Gnc-50X66 Aluminum Alloy Shaft Coupler High Rigid Clamp Coupling
editor by CX 2024-05-16

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *